Universal Property of Non-archimedean Analytification

نویسنده

  • BRIAN CONRAD
چکیده

1.1. Motivation. Over C and over non-archimedean fields, analytification of algebraic spaces is defined as the solution to a quotient problem. Such analytification is interesting, since in the proper case it beautifully explains the essentially algebraic nature of proper analytic spaces with “many” algebraically independent meromorphic functions. (See [A] for the complex-analytic case, and [C3] for the non-archimedean case.) Working with quotients amounts to representing a covariant functor. Our aim is to characterize analytification of algebraic spaces via representing a contravariant functor, generalizing what is done for schemes. In the remainder of §1.1, we review the situation in the case of schemes, and then address the difficulties which arise for algebraic spaces (especially over non-archimedean fields). In particular, we will explain why a certain naive approach to the non-archimedean case (using functors on affinoid algebras) is ultimately not satisfactory. Our main theorem is stated in §1.2. For a scheme X locally of finite type over C, the analytification X can be defined in two ways. In the concrete method, we choose an open affine cover {Ui} and use a closed immersion of each Ui into an affine space to define U i as a zero locus of polynomials in a complex Euclidean space. These are glued together, and the result is independent of {Ui}. A more elegant approach, pushing open affines into the background and functoriality into the foreground, is to use a map iX : X → X that exhibits X as the solution to a universal mapping problem: it is final among all morphisms Z → X where Z is a complex-analytic space and morphisms are taken in the category of locally ringed spaces of C-algebras. In other words, (X, iX) represents the contravariant functor Hom(·, X) on the category of complex-analytic spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-archimedean Analytification of Algebraic Spaces

1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations. We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source of motivation is the relationship between algebraic spaces and analytic s...

متن کامل

Arizona Winter School Project on Analytifications

There is a natural analytification functor from the category of locally separated algebraic spaces locally of finite type over C to the category of complex-analytic spaces [Kn, Ch. I, 5.17ff]. (Recall that a map of algebraic spaces X → S is locally separated if the diagonal ∆X/S : X → X ×S X is an immersion. We require algebraic spaces to have quasi-compact diagonal over SpecZ.) It is natural t...

متن کامل

(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces

The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...

متن کامل

On the Archimedean Multiple-valued Logic Algebras

The Archimedean property is one of the most beautiful axioms of the classical arithmetic and some of the methods of constructing the field of real numbers are based on this property. It is well-known that every Archimedean `-group is abelian and every pseudo-MV algebra is commutative. The aim of this paper is to introduce the Archimedean property for pseudo-MTL algebras and FLw-algebras. The ma...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010